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Abstract: Audio-based classification techniques for body sounds have long been studied to aid in
the diagnosis of respiratory diseases. While most research is centered on the use of coughs as the
main acoustic biomarker, other body sounds also have the potential to detect respiratory diseases.
Recent studies on the coronavirus disease 2019 (COVID-19) have suggested that breath and speech
sounds, in addition to cough, correlate with the disease. Our study proposes fused audio instance
and representation (FAIR) as a method for respiratory disease detection. FAIR relies on constructing
a joint feature vector from various body sounds represented in waveform and spectrogram form. We
conduct experiments on the use case of COVID-19 detection by combining waveform and spectrogram
representation of body sounds. Our findings show that the use of self-attention to combine extracted
features from cough, breath, and speech sounds leads to the best performance with an area under the
receiver operating characteristic curve (AUC) score of 0.8658, a sensitivity of 0.8057, and a specificity
of 0.7958. Compared to models trained solely on spectrograms or waveforms, the use of both
representations results in an improved AUC score, demonstrating that combining spectrogram and
waveform representation helps to enrich the extracted features and outperforms the models that
use only one representation. While this study focuses on COVID-19, FAIR’s flexibility allows it to
combine various multi-modal and multi-instance features in many other diagnostic applications,
potentially leading to more accurate diagnoses across a wider range of diseases.

Keywords: audio; waveform; spectrogram; multi-instance learning; deep learning; classification;
respiratory disease; COVID-19

1. Introduction

The human body produces numerous sounds that indicate its state of health. A slight
change in an organ’s physical state can impact its operation, leading to irregular sound
patterns. Snoring, for example, is a common sound produced by upper airway obstruction
during sleep. While snoring alone is generally not considered pathological, if coupled with
breathing pauses, it can signal obstructive sleep apnea [1]. More generally, body sounds can
be used extensively to support diagnostic decisions. In particular, auscultation is a common
technique used by clinicians to listen to internal sounds of the body with a stethoscope.
Abnormal patterns in organs such as the heart, the lungs, and the gastrointestinal system
can be detected using this method. In respiratory diseases such as pneumonia, auscultation
can be performed to look for crackles or tubular breath sounds, an indication of pulmonary
consolidation [2]. Hence, body sound analysis is part of computer-aided diagnostic appli-
cations such as in respiratory diseases [3–6], Parkinson’s disease [7], and sleep apnea [8].
Although detecting irregular internal sounds might be insufficient for a definitive diagnosis,
it serves as an important indicator that can be combined with other confirmatory clinical
tests from different diagnostic tools to reach a conclusive diagnostic decision.

In this study, we explore an audio-based approach for screening respiratory diseases,
focusing on coronavirus disease 2019 (COVID-19). This disease, caused by SARS-CoV-2,
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infects the respiratory tract [9] and can be difficult to differentiate from other respiratory
illnesses. Viral testing through nucleic acid tests such as polymerase chain reaction (PCR) is
a gold standard but takes several hours or even days to deliver results. Additionally, PCR
testing requires specialized personnel and equipment that may not be available in low-
income or remote areas. An alternative test, known as the antigen test, can retrieve results
in less than 30 minutes by identifying viral proteins with specific antibodies. It is a viable
option for mass testing but is less sensitive. The authors in [10] set a minimum accepted
sensitivity of 75% for rapid antigen tests and find that many test kits in the market miss this
threshold. Since SARS-CoV-2 infects mainly the respiratory system, it can induce changes
in body sounds such as voice and breath. This includes dysphonia, breath abnormalities,
and coughs. Several studies suggest that these changes correlate to COVID-19. For example,
a study by Huang et al. [11] finds abnormal breathing sounds in all COVID-19 patients,
including crackles, asymmetrical vocal resonance, and indistinguishable murmurs. Another
study [12] validates the link between abnormal vocal fold oscillations and COVID-19,
explaining voice changes and speaking difficulties. Respiratory and vocal sounds, therefore,
have the potential to be used as a standalone test or to be combined with antigen tests for
COVID-19 detection.

Screening COVID-19 using respiratory and vocal sounds offers several advantages.
Firstly, with limited PCR testing capacities, sound-based screening combined with antigen
tests can help prioritize who is eligible for PCR tests. Allowing anyone with flu-like symp-
toms to order a PCR test would swiftly overwhelm the testing capacity. Only individuals
flagged by respiratory and vocal sound screening could proceed with confirmatory PCR
tests. Sound-based screening can rapidly identify suspect cases without asking them to
quarantine while waiting for PCR results. Secondly, like antigen tests, sound-based screen-
ing is fast, affordable, convenient, and can be conducted without medical professionals.
The cost of running respiratory and vocal sound screening can even be lower than that of
antigen tests because it can be installed as software or a mobile application on any device,
utilizing existing device microphones and avoiding the need for additional support kits.
Users can record, analyze, and monitor their status unlimited times on their devices. This
is particularly useful in regions or countries where testing capacities are scarce, inacces-
sible, or expensive. Lastly, compared to antigen tests, sound-based screening generates
no medical waste because no physical products are manufactured, which alleviates the
environmental burden.

Respiratory and vocal sounds hold great promise for non-invasive COVID-19 screen-
ing. However, a fully developed screening system is not yet available. Current research on
COVID-19 detection considering multiple body sounds often focuses on individual sounds,
neglecting their interaction [13,14]. COVID-19 may manifest in different body sounds or
combinations of them, varying across individuals. One or more body sounds may be af-
fected, while the others remain intact. It is thus sensible not to rely on a single one but rather
on a combination of several body sounds. We propose combining the most indicative body
sounds for COVID-19 using fusion rules within the detection algorithm. We hypothesize
that the cough, breath, and speech sounds contain biomarkers for COVID-19 and can be
combined using an appropriate fusion rule to maximize the chances of correct detection.
To this end, we propose self-attention as a fusion rule to combine features extracted from
cough, breath, and speech sounds. Mainly, we use waveforms and spectrograms as the
inputs to our model. A waveform represents an audio signal in the time domain, whereas
a spectrogram is a representation in the time-frequency domain. Our main contributions in
this work are summarized as follows:

• We demonstrate that cough, breath, and speech sounds can be leveraged to detect
COVID-19 in a multi-instance audio classification approach based on self-attention
fusion. Our experimental results indicate that combining multiple audio instances
exceeds the performance of single-instance baselines.

• We experimentally show that an audio-based classification approach can benefit
from combining waveform and spectrogram representations of input signals. In
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other words, inputting the time- and frequency-domain dual representations into
the network allows for a richer latent feature space, ultimately improving the overall
classification performance.

• We integrate the above contributions into the FAIR approach, a method that combines
multiple instances of body sound in waveform and spectrogram representations to
classify negative and positive COVID-19 individuals. The FAIR approach is a general
concept that can be applied to other sound classification tasks such as those related to
other respiratory diseases.

2. Related Work

Body sound analysis for pulmonary disorders has long been studied with diagnostic
applications in tuberculosis [5,15], pneumonia [3], chronic obstructive pulmonary disease
(COPD) [6,16,17], asthma [16], croup, and pertussis [18]. Additionally, there are studies on
the classification of specific lung sounds, such as wheezes and crackles [19,20]. Datasets
in these studies are relatively small, ranging from tens to a few hundred subjects, and
often not publicly available [3,5,15,19]. The authors commonly rely on handcrafted audio
features, such as mel-frequency cepstral coefficients (MFCC), log spectral energies, zero-
crossing rate (ZCR), and kurtosis. Some works leverage both handcrafted features and
deep learning [17,18] and study the model’s explainability [21]. While most studies achieve
an overall area under the receiver operating characteristic curve (AUC), sensitivity, and
specificity over 0.9, the limited training data and reliance on handcrafted features may
present challenges for the generalization of proposed approaches. Recent and detailed
reviews of disease classification from cough and respiratory sounds can be found in the
work of Serrurier et al. [22] and Xie et al. [23].

The COVID-19 pandemic has fueled significant research growth and the develop-
ment of new techniques and datasets specifically focused on COVID-19 detection. Large
collections of COVID-19 sounds have been created through crowdsourcing. Voluntary
participants submit recordings of their body sounds to a mobile app or website and provide
metadata such as their COVID-19 status and comorbidity. Such large datasets enable
researchers to develop COVID-19 detection algorithms. To our knowledge, the largest
crowdsourcing datasets are COUGHVID [24], Coswara [25], and COVID-19 Sounds [26].
COUGHVID comprises more than 20,000 cough recordings, while Coswara and COVID-19
Sounds consist of cough, breath, and vocal sounds from more than 2000 and 30,000 par-
ticipants, respectively. In terms of technical development, some studies utilize traditional
machine learning approaches with the handcrafted features mentioned earlier [13,27–30].
On the other hand, several studies adopt deep learning approaches by training a convo-
lutional neural network (CNN) on spectrograms or waveforms instead of handcrafted
features. Rao et al. [31] presented a VGG13 network [32] that utilizes spectrograms as the
input with a combined cross-entropy and focal loss. Their approach achieved an AUC of
0.78 on the COUGHVID dataset. Early works that combine different respiratory sounds and
demonstrate improved classification performance are Xia et al. [33] and Wall et al. [34]. Xia
et al. [33] analyzed concatenated features of cough, breath, and speech sounds in a simple
VGG-ish model. The study introduced the combination of features from various body
sounds to improve classification performance, achieving an AUC of 0.75 and a sensitivity
and specificity of 0.70. Wall et al. [34] put forward an ensemble approach by combining
four deep neural networks with attention mechanism. The ensemble model, trained sepa-
rately on respiratory, speech, and coughing audio from the ICBHI and Coswara datasets,
achieved overall performance for the base and ensemble model with ICBHI scores between
0.920 and 0.9766. While the ensemble approach is shown to benefit the performance of the
classification task, it does not allow studying the interaction among different respiratory
and vocal sounds as the models are trained separately for each sound type.

In our study, we investigate the former approach, which seeks to combine body sound
instances. Unlike research works that usually study each body sound independently [14] or
combine them by voting on prediction scores [13,34], we explore fusion rules that combine
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them at the feature level. In other words, we train a network to learn a joint feature vector
that incorporates all respiratory and vocal sounds. The joint feature vector is optimized
to implicitly reflect the relative importance of each body sound for the final prediction.
Although our work shares similarities with Xie et al. [33], we investigate a more complex
fusion rule than simply concatenating features. We use self-attention [35], which captures
the dependencies among body sounds into a joint feature vector. Self-attention is not only
used as a layer in the transformer architecture but also for feature aggregation [36]. This
is considered late fusion, as opposed to early fusion, as in the work of Wanasinghe et al.
[37], where the authors concatenate the features channel-wise to form an input for the
classification model. In addition, instead of using handcrafted audio features, we train
our model directly on waveform and spectrogram representations, creating more robust
features compared to previous methods. We report an average performance of the models
obtained from cross-validation on a split test set in Section 3. It is important to note that the
Coswara dataset does not have a single and universally used test set, and the data size was
growing at the time we conducted our experiment.

3. Methods

Fused audio instance and representation (FAIR) for COVID-19 detection is an end-to-
end approach that consists of feature extractors for waveform and spectrogram representa-
tions, an attention-based fusion unit, and a classifier, as depicted in Figure 1.

For ease of exposition, assume that the system should consider c different input (body)
sounds (for example, see Section 4.1). Each input sound is represented by a fixed-length
waveform vector and the associated spectrogram representation. The fixed-length waveform
vectors x1, ..., xc ∈ Rl are obtained by resampling and optionally padding the original
input audio signals. The associated spectrograms x1+c, ..., x2c ∈ Rm×n are constructed by
transforming the waveform representation with the discrete short-time Fourier transform
[38], where m is the number of time frames and n is the number of frequency bins. In our
experiments, we use the mel-spectrogram, which is the logarithmic transformation of the
frequency in hertz to mel scale given by the equation

fMel = 1127 ln
(

1 +
fHz
700

)
. (1)

In order to obtain a representative joint feature vector for all c input body sounds
across waveform and spectrogram inputs, we utilize two pre-trained neural networks gw, gs
followed by linear layers pw, ps to project the waveform and spectrogram into a common
feature space, respectively. The concatenated projections f1, ..., fc where

fk = [pw ◦ gw(xk), ps ◦ gs(xk+c)] ∈ R2d (2)

are then fused using an attention-based fusion unit ϕ : Rc×2d → Rd to obtain a reduced
joint feature representation

z = ϕ(f1, f2, ..., fc) ∈ Rd. (3)

Figure 1 shows an overview of the FAIR approach and the main components along
the pipeline. The feature extractors and the attention-based fusion unit are instrumental
components in our proposed approach and are further detailed in the next sections.
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Figure 1. An overview of the FAIR approach. FAIR is an end-to-end approach consisting of two
stages: feature extraction and feature fusion. In the first stage, the pretrained wav2vec and DeiT-S/16
extract waveform and spectrogram features from body sounds (here c = 3), which are projected to
the embedding of dimension d = 128. In the second stage, the embeddings of multiple instances and
representations are fused into a compact feature vector using self-attention. The resulting joint feature
vector is used by the classifier, which is a two-layer MLP that outputs the probability of COVID-19
infection.

3.1. Feature Extractors

Feature extractors are neural networks responsible for learning representative features
for each body sound. As the input consists of waveform and spectrogram, two neural
networks gw and gs are trained in parallel to handle both representations of the audio
data. All waveform inputs are transformed via gw and the corresponding spectrograms
are transformed via gs to latent representations. We choose for gw a pretrained wav2vec
[39] network, and for gs, we choose a DeiT-S/16, a vision transformer (ViT) model [40], as
backbone. DeiT-S/16 and wav2vec are transformer-based models and achieve state-of-the-
art results in language and vision models.

The wav2vec network [39], originally developed for speech-to-text translation tasks,
comprises both convolutional and self-attention layers. It is pretrained on a large audio
corpus in an unsupervised fashion. Therefore, we take advantage of the pretrained wav2vec
features and design a fine-tuning unit to effectively utilize them in our COVID-19 detection
task. As shown in Figure 2, the recording is first resampled to 16,000 Hz. We then extract
features every 25 ms using the pretrained wav2vec model without changing its weights.
As features are only extracted for every 25 ms time frame, we use percentile pooling to
aggregate features across all frames. For each feature along the time axis, we select the
values at the 10th and 90th percentile. This is considered a robust alternative to the min
and max pooling of feature vectors because the min and max values might output outliers
due to the background noise in the recordings. The 10th and 90th percentiles, therefore,
represent the bottom and top 10% of feature values while excluding outliers. Our tuning
experiment also shows that percentile pooling results in superior performance compared
to just average or median pooling. After this step, we flatten the resulting feature matrix
and feed it into a MLP layer to reduce the dimensions of the feature embedding to 128.

The DeiT-S/16 architecture is a variant of ViT introduced by Touvron et al. [41] as part
of the data-efficient image transformers (DeiT). It has the exact architecture of the original
ViT [40] and differs only in the training strategy. The utilized model is categorized into
the small (S) transformer family, where the projected embedding dimension through self-
attention blocks is 384. It consists of 12 multi-headed self-attention (MSA) layers [35], each
consisting of six heads. The resolution of each patch in the attention layer is 16 × 16 pixels.
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We modify the last dense layer of DeiT-S/16 to be an identity unit to extract features
from the previous layers. In all our experiments, we use a pretrained DeiT-S/16 on the
ImageNet dataset and fine-tune it on our target dataset. Finally, we projected the output to
a 128-dimensional feature vector similar to wav2vec.

10th
percentile

90th
percentile

Time

Features
Shape (T, 2)

Shape (T*2)

Shape (128)

5

MLP

Sample rate
8000 Hz

wav2vec

1

2 3 4

Linear classifier

6

Linear layer 
& Sigmoid Activation

Feature extraction Feature selection by percentile pooling Projection & Classification

Fusion with spectrogram
features

or

Figure 2. Wav2vec-based extraction of waveform features. Step 1: 16 kHz sampled audio is fed into
the pretrained wav2vec model to extract features. Step 2: wav2vec outputs a feature vector per every
25 ms of the audio, resulting in a t × d matrix, where t is the total time indices and d is the dimension
of the feature vector. We select in each feature vector the element at the 10th and 90th percentile. Step
3: The new feature matrix is flattened into a single vector. Step 4: An MLP layer receives the feature
vector. Step 5: The MLP layer projects it into a fixed dimension of 128. Step 6: The resulting feature
vector is fed into a linear classifier or can be fused with other features (FAIR method; see Figure 1)
before entering the linear classifier. The linear classifier is a linear layer with one neuron followed by
sigmoid activation that outputs the predicted probability of a COVID-19 infection.

3.2. Fusion Unit and Classifier

The fusion unit ϕ combines the projected joint embeddings f1, ..., fc as defined in (2)
into a single vector z by using an MSA layer [35] and an MLP h:

z = ϕ(f1, ..., fc) = h(MSA(f1, ..., fc)). (4)

Self-attention is originally developed for language models. In language models, a
sequence consists of many tokens (e.g., words) that the model processes to capture the
overall meaning (i.e., global information). Similarly, in our case, the tokens are feature
vectors representing different sound instances. While memorizing long sequences can be
challenging, and models may struggle to retain information from the beginning of the
sequence, self-attention addresses this by dynamically creating a new set of features by
linearly combining the original feature vectors. In detail, the output of MSA for a given
input feature sequence f1, ..., fc is a new set of feature vectors f′1, ..., f′c, where each f′k is
obtained as a weighted combination of the original feature vectors:

[
f′1, ..., f′c

]
= softmax

(
QK⊤
√

d

)
V. (5)

Here, Q, K, and V are linear projections of [f1, ..., fc] with learnable matrices Wq, Wk,
and Wv. The output of the softmax operation corresponds to the attention matrix related to
the input features (cf. [35]).

Next, all feature vectors f′1, ..., f′c are concatenated and projected using an MLP h,
first to 256 dimensions and finally to a 128-dimensional feature vector z. For the classifier,
we selected a linear layer with a single output neuron followed by a sigmoid activation
function. It maps the fused representation z to the predicted class probability score.
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4. Experiment
4.1. Dataset

Coswara is a crowdsourcing project to build an audio corpus from COVID-19-negative
and -positive individuals. The dataset is publicly available to enable research on diagnostic
tools for respiratory diseases, particularly COVID-19. The dataset is published in the
work of Bhattacharya et al. [42] and publicly available at https://github.com/iiscleap/
Coswara-Data (accessed on 1 September 2021). Approval of data collection was issued by
the Institutional Human Ethics Committee at the Indian Institute of Science, Bangalore.
Informed consent was obtained from all participants who uploaded the recordings. The
collected data were anonymized and de-identified by the dataset’s provider. The audio
recordings were collected between April 2020 and February 2022. Data collection occurs
through a web interface where users are prompted to provide their metadata and recordings
using a device microphone. The metadata cover age, sex, location, and COVID-19 status.
Users are then instructed to submit nine audio recordings of (heavy and shallow) cough,
(deep and shallow) breath, (fast and slow) counting from 1 to 20, and uttering the phonemes
/a/, /e/, and /o/. The COVID-19 status must be selected from the categories negative,
positive with or without symptoms, recovered, and no identified respiratory disease. There
is no restriction on the duration of the recordings, so users can decide when they want
to start and stop recording. Figure 3 visualizes the waveforms and spectrograms of a
participant in the Coswara dataset. We accessed the database when it was still in the last
collection stage. The recordings used in our study have timestamps between 14 March 2020
and 14 July 2021. All methods in our study were carried out in accordance with relevant
guidelines and regulations.

4.2. Data Preprocessing and Augmentation

Regarding data preprocessing, we first removed the leading and trailing silence. We
observed that long recordings (>20 s) mainly contain silence, and the duration at which
people cough, breathe, or speak lasts only 3–10 s. Next, we removed corrupted files, which
are those that contain no sound or noise or a different sound type than the one reported in
the label. The recordings whose duration is less than 1 s were eliminated because they do
not contain any detected sound. Then, similar to the approach of [33], we used a pretrained
model called YAMNet, trained on a massive dataset of YouTube audio events (including
cough, speech, and breath), to systematically remove recordings where the detected sound
does not match the provided label. In addition, we excluded shallow cough and breath
based on the provided labels in our experiments due to low quality and high misdetection
rate as noise. After preprocessing, 735 patients were removed, leaving 1359 participants for
analysis, with 223 COVID-19 positive and 1136 COVID-19 negative. Each participant has
exactly 7 recordings, which amounts to 9513 recordings used in our experiments. Table 1
provides statistics on the audio length. The participants were split into six folds for training
and testing, and details are provided in Section 4.4.

We used Torchaudio (version 0.9.1) for audio processing and normalization. The
values of loaded audio are automatically normalized between −1 and 1. Recordings
were resampled to two rates: 44,100 Hz (DeiT-S/16) and 16,000 Hz (wav2vec). We found
that the first 4 s of each recording yield the best performance after tuning with different
lengths. For spectrogram transformation, we took the mel-spectrogram with 128 mel
filterbanks operating in 1025 frequency bins, i.e., FFT size of 2048, window size of 2048,
and hop size of 1024. We performed data augmentation on the fly during training. This
means we randomly selected a continuous 4 s interval from the first 5 s of each recording,
introducing a slight variation. However, during evaluation, we consistently selected the
first 4 s. We investigated many audio augmentation techniques such as pitch shift, time
stretch, or masking, but only amplitude scaling, time, and frequency masking improve
performance. Amplitude scaling randomly injects an amplitude gain between 0.9 and
1.3 on the waveform. Amplitude scaling is always performed after normalization and
before spectrogram transformation. Additionally, we applied random time and frequency

https://github.com/iiscleap/Coswara-Data
https://github.com/iiscleap/Coswara-Data
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masking to the spectrogram, where a block of data is set to zero for a duration of 10 units
(time or frequency steps).
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Figure 3. Visualization of the data in our study. We plot the waveform and associated mel spectrogram
of 5 body sounds, namely cough-heavy, breath-deep, counting-fast, counting-normal, and phonemes
/a/, /e/, and /o/. We do not use the shallow cough and breath due to the high noise level. The
recordings are resampled to 44,100 Hz and visualized with the first 4 s.

Table 1. The statistics of audio length (in second) after the preprocessing step.

Body Sound Min (s) Max (s) Median (s) Mean (s)

Heavy cough 1.58 30.04 6.06 6.27
Deep breath 2.65 30.04 16.30 17.08
Normal counting 1.62 29.95 14.34 14.58
Fast counting 1.86 29.95 7.94 8.00
Phoneme /a/ 1.19 29.95 10.03 10.53
Phoneme /e/ 1.28 29.95 10.96 11.73
Phoneme /o/ 1.37 29.95 10.41 11.19
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4.3. Baseline and Benchmark Experiments

We compare the models developed with a single body sound instance, the baseline
(BA), with multiple combinations of body sounds, the benchmark (BE). Table 2 shows an
overview of the baseline and benchmark experiments. In baseline experiments, we train
seven models, each using only a single body sound (heavy cough, deep breath, fast and
normal counting, and the utterance of the phonemes /a/, /e/, and /o/). In the benchmark
experiments, we group counting and utterance of the three vowels as a single instance,
thereafter speech. We investigate the following combinations: (1) speech, (2) cough and
breath, (3) cough and speech, (4) breath and speech, and (5) cough, breath, and speech. In
both the baseline and benchmark experiments, we use either waveforms or spectrograms
in separate experiments. The last experiment (BE3) is our FAIR model, which utilizes both
waveform and spectrogram. The input to DeiT-S/16 [41] is a spectrogram image of size
128 × 173 calculated from a 4 s audio clip sampled at 44,100 Hz. The waveform input to
wav2vec has a sample rate of 16,000 Hz to be compatible with its pretraining, resulting in a
vector length of 64,000 for a 4 s clip.

Table 2. Baseline and benchmark experiments. The last experiment (BE3) is our proposed FAIR
model that uses both waveform and spectrogram inputs and the body sound fusion unit.

No. Representation Architecture Body Sound Fusion No. Models

BA1 Waveform wav2vec None 7
BA2 Spectrogram DeiT-S/16 None 7
BE1 Waveform wav2vec Attention 5
BE2 Spectrogram DeiT-S/16 Attention 5
BE3 Spectrogram

Waveform
DeiT-S/16
wav2vec

Attention 5

4.4. Cross-Validation

A set of 226 subjects (191 COVID-19 negative and 35 positive), thereafter the test fold,
is randomly selected from our data to serve as a fixed test set for all experiments. The
remaining 1133 subjects are used as training and validation in a five-fold cross-validation
scheme as follows: the subjects are split into five folds of similar size (see Table 3), four
folds are used for training, and the remaining fold is used for validation in a rotating
process so that each subject is used exactly once as the validation fold. It provides five
different models. Each of them is tested on the fixed test fold, and the average of the results
is reported.

Table 3. Repartition of the subjects for the five-fold cross-validation scheme.

Subset Label Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Train Negative 761 756 751 760 752
Positive 146 151 155 146 154

Validation Negative 184 189 194 185 193
Positive 42 37 33 42 34

4.5. Hyperparameters

Table 4 shows the complete hyperparameter settings in our experiments. Most hyper-
parameters are identical across architectures, representations, or fusion rules. For example,
we train all models for 30 epochs without early stopping, and the best checkpoint is saved
based on the best AUC obtained in the validation fold. The loss function that we use is
binary cross-entropy (BCE), and we optimize this loss with AdamW (Adam with weight
decay) [43], which is often used with transformer-based architecture [35]. We fix a base
learning rate of 0.0001 for all experiments and adjust the learning rate scheduler and weight
decay conditional on the architecture or fusion rules. The weight decay factor is set between
0.1 and 0.001. These hyperparameters are experimentally chosen with cross-validation.
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Table 4. Hyperparameter settings in baseline and benchmark experiments.

Architecture wav2vec DeiT-S/16 FAIR

Body sound fusion None Attention None Attention Attention
Optimizer AdamW AdamW AdamW AdamW AdamW
Base learning rate 10−4 10−4 10−4 10−4 10−4

Weight decay 10−3 10−3 10−1 10−1 10−3

Optimizer momentum (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Batch size 32 32 32 32 32
Training epochs 30 30 30 30 30
Learning rate scheduler cosine cosine cosine cosine cosine
Warmup epochs 10 10 10 10 10
Loss function BCE BCE BCE BCE BCE

4.6. Training

All models in our experiments are trained end-to-end, meaning all components (fea-
ture extractors’ projection layers, attention-based fusion unit, and linear classifier) are
trained simultaneously. The pretrained wav2vec and DeiT-S/16 are frozen, and only the
added projecting layers are updated during training. The number of trainable parameters
for the FAIR approach can be found in Table A8 in Appendix A. To address the class im-
balance in the dataset, we employ two techniques: weighted loss and batch oversampling.
Weighted loss assigns a higher penalty for misclassifying the minority class (COVID-19
positive), encouraging the model to focus on learning from these rarer examples. Batch
oversampling ensures an equal representation of positive and negative classes within each
training batch, further mitigating bias towards the majority class.

4.7. Evaluation

Our primary metric for model selection is AUC. During training, we save the check-
point with the highest performance based on AUC. During validation, we use the ROC
curve to compute the optimal threshold, which is the threshold resulting in the maximum
sum of sensitivity and specificity, and take this threshold to compute other metrics such
as sensitivity and specificity in the test set. We report the AUC scores in the main paper
and provide the sensitivity, specificity, and area under the precision–recall curve (AUPRC)
in Appendix A. For statistical testing, our samples are dependent and not normally dis-
tributed by the Kolmogorov–Smirnov test. Therefore, we opt for the one-tailed Wilcoxon
signed-rank test with n = 10. This means we repeat the five-fold cross-validation twice
(with different random seeds) and use the Wilcoxon test with a significance level of alpha
0.05 to compare the performance of different models.

5. Results
5.1. Baseline Results

Table 5 shows the performance of the models trained on a single body sound instance.
The input to the model is either a waveform (BA1) or a spectrogram (BA2) of a single body
sound. The results reveal that the models trained on spectrograms perform substantially
better than those trained on waveforms. The average AUC scores for DeiT-S/16 (BA2) and
wav2vec (BA1) are 0.7549 and 0.6127. The performance of different body sounds across
architectures and representations does not establish a consistent pattern. For example,
using only cough sounds leads to the highest AUC score in DeiT-S/16, but a lower score
in wav2vec. There appears to be a countertrend between DeiT-S/16 and wav2vec. For
example, the counting sound achieves better results than the fast counting sound in DeiT-
S/16 but worse in wav2vec. Similarly, the utterance of /o/ outperforms other vowels in
DeiT-S/16 but performs poorly in wav2vec.
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Table 5. Baseline single representation, single body sound without fusion rules: five-fold mean and
standard deviation of AUC scores related to baseline experiments utilizing only a single-input audio
feature. A model with a DeiT-S/16 backbone relying only on an input spectrogram is benchmarked
against a model with a wav2vec backbone relying only on a waveform input. The bold scores denote
the highest performance achieved in this comparison.

Input Body Sound wav2vec (BA1) DeiT-S/16 (BA2)

Cough—heavy 0.4574 ± 0.0093 0.7782 ± 0.0132
Breath—deep 0.6597 ± 0.0222 0.7552 ± 0.0254
Counting—fast 0.7090 ± 0.0136 0.7291 ± 0.0196
Counting—normal 0.6285 ± 0.0155 0.7943 ± 0.0326
Phoneme /a/ 0.6484 ± 0.0150 0.7418 ± 0.0399
Phoneme /e/ 0.6209 ± 0.0197 0.7399 ± 0.0318
Phoneme /o/ 0.5649 ± 0.0293 0.7457 ± 0.0288

Average 0.6127 ± 0.0751 0.7549 ± 0.0215

5.2. Benchmark Results

Table 6 presents the results comparing the FAIR model (BE3) to the DeiT-S/16 (BE2)
and wav2vec (BE1) models across various body sound combinations using self-attention
fusion. A one-tailed Wilcoxon signed-rank test statistically evaluates the performance
of BE3 to BE1, BE2, and all BA experiments. The FAIR approach generally outperforms
models trained on a single representation. The sole exception is the cough-breath combina-
tion, where the p-value exceeds 0.05 for all individual body sounds except fast counting.
Within benchmarking experiments, the FAIR approach demonstrates statistically significant
improvement (p < 0.05) compared to using a single feature extractor, with the exceptions
of cough-breath and cough-speech combinations, which exhibit p-values exceeding 0.05.
The average AUC score of FAIR is 0.8316, which is 0.0227 more than DeiT-S/16 and 0.0847
more than wav2vec. FAIR achieves the highest AUC scores in all combinations of body
sound, with the only exception in the cough-breath combination, which will be discussed
in the next section. The cough-breath combination results in the lowest AUC score in all
alternatives in terms of the body sound combination. The largest combination, cough-
breath-speech, gives the best results in FAIR and wav2vec but is behind the cough-speech
combination in DeiT-S/16 by a margin of AUC 0.007. FAIR achieves the highest AUC score
of 0.8658 with the combination of cough, breath, and speech. This score is 0.0343 and 0.0941,
higher than the best scores produced by DeiT-S/16 and wav2vec. The results of the FAIR
models find clear support for the use of dual audio representation along with body sound
fusion.

Table 6. Benchmark single and dual representation, multiple body sounds with fusion rules: five-fold
mean and standard deviation of AUC related to benchmark experiments for fusing body sound
instances and representations. The bold scores denote the highest performance achieved in this
comparison. The p-value is calculated with a one-tailed Wilcoxon signed-rank test (n = 10) for each
pair of experiments by repeating the five-fold cross-validation twice with different random seeds.
The p-values for BE1 vs. BE2 and BE1 vs. BE3 are less than 0.001 and are omitted from the table.

Model p-Value
Input Body Sounds wav2vec (BE1) DeiT-S/16 (BE2) FAIR (BE3) BE2 vs. BE3

Speech 0.7562 ± 0.0152 0.8081 ± 0.0239 0.8434 ± 0.0290 < 0.001
Cough + Breath 0.6739 ± 0.0435 0.7685 ± 0.0183 0.7585 ± 0.0174 0.5000
Cough + Speech 0.7644 ± 0.0088 0.8315 ± 0.0306 0.8584 ± 0.0308 0.2460
Breath + Speech 0.7682 ± 0.0149 0.8122 ± 0.0125 0.8319 ± 0.0187 0.0137
Cough + Breath + Speech 0.7717 ± 0.0128 0.8241 ± 0.0266 0.8658 ± 0.0115 0.0019

Average 0.7469 ± 0.0369 0.8089 ± 0.0218 0.8316 ± 0.0384
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6. Discussion

As can be seen in Table 6, the AUC scores vary among body sound combinations,
making it unclear which combination is best. Therefore, it is valid to doubt whether a
preferable combination of body sounds leads to the best predictive outcome. However,
neither our results nor the literature provide a conclusive answer. We suggest that per-
formance is correlated with the number of body sounds in a combination. To illustrate,
we compare the performance of the model trained with (1) a single body sound instance
and (2) a combination of body sounds. In training models with a single body sound in-
stance as input (Section 5.1), no single body sound consistently outperforms the others.
The best-performing sound depends on the architecture or audio representation used. For
instance, the cough sound performs well with DeiT-S/16 (BA2) but not with wav2vec (BA1).
Similarly, in our ablation study, replacing DeiT-S/16 with ResNet50 yields similar results
(Table A3 in Appendix A). These subtle differences among body sounds may be due to the
stochasticity or the feature extractor settings, indicating that no body sound is significantly
better than the others as input to our model. Regarding the combinations of body sounds
(Section 5.2), we observe that the combination of cough and breath consistently yields
the lowest AUC scores for all models. This combination involves only two body sound
instances, while all others include at least five instances. This observation suggests that the
performance is likely to correlate with the number of instances of body sound. To support
this, we conduct additional experiments in a similar setting to benchmark experiments
with the following combinations: counting (incl. fast and normal counting) and vowel (incl.
utterance of /a/, /e/, and /o/). Figure 4 shows that counting and cough-breath combi-
nations perform similarly, while the three vowel utterances outperform the two-instance
combinations by 0.03–0.04 AUC. This supports a correlation between performance and the
number of body sounds.

RESTRICTED1

AUC Score

Cough

Breath 

Counting Vowel Counting

Vowel
Breath

Counting

Vowel

Cough

Counting

Vowel

Cough

Breath

Counting

Vowel

No. instances 2 2 3 5 6 6 7

p < 0.001
p = 0.0137

p = 0.2460 p = 0.0019

p = 0.5
p = 0.1162

p = 0.0244

Figure 4. Comparison of the DeiT-S/16 model (spectrogram features) and FAIR (waveform and
spectrogram features). The x-axis shows the combination with the number of instances in ascending
order of quantity. Additional results can be found in Tables A2 and A4 in Appendix A.

We analyze the effect of the dual representation of the spectrogram and waveform
in the absence of body sound fusion by conducting an ablation study similar to the FAIR
framework but with the input of a single body sound. As there are no rules for body sound
fusion, the features extracted from two representations are concatenated, flattened, and
then projected onto a 128-dimensional vector by an MLP layer. Similar to the baseline
experiment, we present the AUC scores of seven models trained on seven body sound
instances in Table 7. Overall, the average AUC scores are on par with those of the DeiT-
S/16 model (BA2) in Table 5. Breath and counting sounds achieve the highest AUC
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score, whereas the utterance of vowels /e/ and /o/ leads to the lowest performance. The
benefit of joint features from dual representation is not observed because the change in
the individual AUC scores of each body sound does not follow any pattern. Compared
to the DeiT-S/16 results in Table 5, except for cough, the difference in performance is
subtle. The result suggests that the waveform representation contributes little to the final
classifier. The performance is indeed strongly influenced by the powerful DeiT-S/16 in
the spectrogram representation, which eclipses the features obtained from the waveform.
Therefore, we conclude that using dual representation in the absence of body sound fusion
does not improve any performance. However, when the dual representation is used for
body sound fusion, the extra information from multiple body sounds is picked up by the
fusion unit and enriches the joint extracted feature. The fusion unit is able to amplify
the aggregated information due to the self-attention mechanism. One of the interesting
properties of self-attention is scaling, which is discussed in the work of Dosovitskiy et
al. [40]. The authors note that the performance of the transformer-based model could be
scaled up in response to an increase in the resolution of patches or number of blocks. This
contrasts with convolutional networks, in which accuracy can reach saturation at a certain
level of complexity. This scaling property explains why adding more body sounds leads to
a steady increase in AUC scores. Adding more body sounds means adding more tokens
and establishing stronger dependencies among them. When only two or three instances
of body sound are adopted, the effect of body sound fusion is less significant. Figure 4
shows the AUC scores of the FAIR and DeiT-S/16 models on the different combinations of
body sounds sorted in ascending order of instances. Combinations with less than or equal
to three instances (i.e., cough-breath, fast and normal counting, /a-e-o/ vowel utterance)
achieve AUC scores in the range of 0.75–0.79, which is on par or slightly better than the
performance of models on a single instance (Table 7). This happens because the number of
instances is insufficient to establish long-range dependencies. As more body sounds are
added, these dependencies are captured, and the performance of models with fusion units
starts to improve substantially. We observe a similar effect when replacing the fusion unit
of FAIR by attention-weighted pooling (see Table A7 in Appendix A). When the number of
body sounds in the combination is less than three, both attention-based fusion units have
comparable performance. However, the gap is significant as more instances are combined.
In addition, the joint feature vector embeds more information when a dual representation is
adopted. When the number of instances in the combination is small, i.e., less than three, the
gain due to the dual representation is not noticeable. However, starting from five instances,
the gap between FAIR and DeiT-S/16 becomes wider in favor of FAIR. We attribute this
gain to the resonance of extra information given by the dual representation and the number
of body sounds, which efficiently captured the self-attention fusion rule.

Table 7. Baseline dual representation, single body sound without fusion rules: five-fold mean and
standard deviation of AUC scores related to baseline experiments utilizing concatenation of waveform
and spectrogram representation with DeiT-S/16 and wav2vec backbones.

Input Body Sound DeiT-S/16 & wav2vec

Cough—heavy 0.7426 ± 0.0268
Breath—deep 0.7661 ± 0.0113
Counting—fast 0.7698 ± 0.0204
Counting—normal 0.7581 ± 0.0938
Phoneme /a/ 0.7577 ± 0.0213
Phoneme /e/ 0.7299 ± 0.0174
Phoneme /o/ 0.7394 ± 0.0168

Average 0.7519 ± 0.0137
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7. Challenges and Limitations

Our study also has limitations in data and model development. Beyond the number
of body sounds combined, the varying duration of each instance can also influence the
results. Here, we truncate recordings to 4 s, but a cough may last less than this, leaving only
breathing sounds in the remaining time. A finer analysis taking this aspect into account
should be considered in a follow-up study. Background noise presents another source of
bias. Most recordings contain noise, which can potentially mislead the model. For instance,
the model might predict a positive COVID-19 case solely due to the absence of background
noise, as infected individuals are often isolated. To mitigate these biases, data collection
should incorporate specific instructions. Participants could be instructed to record in quiet
environments or produce a set number of coughs within a specific timeframe. Regarding
model development, the joint representation brings marginal improvement over the model
using only spectrogram features. This suggests that the contribution of waveform features
is minimal compared to that of features derived from spectrograms to the model with joint
representation. The choice of the wav2vec backbone model might not be optimal for the task
at hand as it is pretrained on speech datasets, which differs from respiratory sounds such as
cough and breath. A pre-trained model on a dataset comprising a multitude of respiratory
sounds could potentially improve the effectiveness and generalizability of waveform
features for respiratory diseases. In a future study, different waveform embeddings could
be systematically compared. The same holds true for an extended analysis of different
vision embedding backbones. Since the proposed FAIR framework is easily adaptable to
such changes, we deem this a path for fruitful future research. While this study focused on
COVID-19 detection based on the Coswara dataset, the FAIR approach can be generalized
to combine various body sounds for identifying other respiratory illnesses. We plan to
conduct further studies on other diseases where multi-instance and multi-modal features
can be leveraged to enhance detection rates.

8. Conclusions

In this article, we study deep learning approaches to detect COVID-19 using body
sounds. To this end, we propose FAIR, a multi-instance audio classification approach
with attention-based fusion on waveform and spectrogram representation. We prove the
effectiveness of our approach by conducting extensive experiments on the Coswara dataset.
The results demonstrate that the fusion of body sounds using self-attention helps extract
richer features that are useful for the classification of COVID-19-negative and -positive
patients. In addition, we perform an in-depth analysis of the influence of the fusion rule on
the performance. We find that the scaling property of self-attention shows great efficiency
when more instances of body sounds and representations are adopted. The best setting
with a combination of cough, breath, and speech sounds in waveform and spectrogram
representation results in an AUC score of 0.8658, a sensitivity of 0.8057, and a specificity of
0.7958 on our test set. The sensitivity of our model exceeds 0.75, the required threshold of
the COVID-19 screening test [10].

In addition, FAIR is not limited to COVID-19 detection. It can be adapted to other
audio classification problems involving diverse combinations of multi-instance inputs. In
our future work, we consider applying FAIR to other critical biomedical audio classification
tasks. The framework can be extended in various ways, for example, by integrating multi-
modal inputs, such as clinical lab values, with the spectrogram and waveform features
derived from the audio signal. The attention-based fusion mechanism allows quantifying
the feature attribution based on the attention weights. Particularly in the multi-modal
setting, we propose carefully assessing the aforementioned attribution scores in order to
derive further insights into the relevance of different audio or non-audio clinical biomarkers.
Furthermore, as indicated in Truong et al. [36], simultaneously extracting and fusing multi-
ple multi-modal embeddings could improve the overall model performance in classification
tasks by leveraging complementary information within an extended feature space.
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Appendix A. Additional Experimental Results

Appendix A.1. Self-Attention Fusion with Only Waveform Inputs

Table A1. AUC, sensitivity, specificity, AUPRC, precision, F1, and accuracy of wav2vec models on
different combination of body sounds using self-attention fusion.

Feature Extractor wav2vec (BE1)

Body Sound AUC Sensitivity Specificity AUPRC Precision F1 Accuracy

Speech 0.7562 ± 0.0152 0.3557 ± 0.0409 0.7592 ± 0.0586 0.3794 ± 0.0824 0.7028 ± 0.0689 0.4685 ± 0.0282 0.7504 ± 0.0460
Cough + Breath 0.6739 ± 0.0435 0.2694 ± 0.0363 0.7200 ± 0.0524 0.1583 ± 0.0181 0.7199 ± 0.0584 0.3904 ± 0.0453 0.6469 ± 0.0669
Cough + Speech 0.7644 ± 0.0088 0.3922 ± 0.0771 0.7906 ± 0.0937 0.4218 ± 0.0283 0.6628 ± 0.1056 0.4799 ± 0.0413 0.7708 ± 0.0729
Breath + Speech 0.7682 ± 0.0149 0.3747 ± 0.0675 0.6743 ± 0.0966 0.4526 ± 0.0167 0.6744± 0.1082 0.4705 ± 0.0343 0.7593 ± 0.0692
Cough + Breath + Speech 0.7717 ± 0.0128 0.3358 ± 0.0347 0.7236 ± 0.0669 0.3991 ± 0.0409 0.7460 ± 0.0757 0.4594 ± 0.0235 0.7265 ± 0.0514

https://github.com/iiscleap/Coswara-Data
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Appendix A.2. Self-Attention Fusion with Only Spectrogram Inputs

Table A2. AUC, sensitivity, specificity, AUPRC, precision, F1, and accuracy of DeiT-S/16 models
on different combinations of body sounds using self-attention fusion. (*) Experiments on additional
body sound combinations.

Feature Extractor DeiT-S/16 (BE2)

Body sound AUC Sensitivity Specificity AUPRC Precision F1 Accuracy

Speech 0.8081 ± 0.0239 0.7486 ± 0.0775 0.7717 ± 0.0711 0.5584 ± 0.0183 0.3865 ± 0.0598 0.5043 ± 0.0435 0.7681 ± 0.0570
Cough + Breath 0.7685 ± 0.0183 0.6400 ± 0.0642 0.8293 ± 0.0718 0.4749 ± 0.0680 0.4283 ± 0.0839 0.5043 ± 0.0443 0.8000 ± 0.0572
Cough + Speech 0.8315 ± 0.0306 0.7371 ± 0.0836 0.7927 ± 0.0892 0.5728 ± 0.0558 0.4229 ± 0.1148 0.5251 ± 0.0802 0.7841 ± 0.0756
Breath + Speech 0.8122 ± 0.0125 0.6571 ± 0.0313 0.8796 ± 0.0298 0.5879 ± 0.0615 0.5077 ± 0.0623 0.5699 ± 0.0339 0.8451 ± 0.0250
Cough + Breath + Speech 0.8241 ± 0.0266 0.6914 ± 0.0796 0.8408 ± 0.0838 0.6159 ± 0.0174 0.4741 ± 0.1064 0.5502 ± 0.0658 0.8177 ± 0.0696

Counting (fast + normal)
(*) 0.7467 ± 0.0124 0.6629 ± 0.0946 0.7790 ± 0.0774 0.4456 ± 0.0368 0.2611 ± 0.0603 0.3860 ± 0.0553 0.5849 ± 0.1302

Phoneme (/a/-/e/-/o/)
(*) 0.7806 ± 0.0208 0.7886 ± 0.0100 0.6827 ± 0.0753 0.4311 ± 0.0258 0.2705 ± 0.0637 0.3956 ± 0.0681 0.5752 ± 0.2151

Table A3. AUC, sensitivity, and specificity of ResNet50 models on different combination of body
sounds using self-attention fusion.

Feature Extractor ResNet50

Body Sound AUC Sensitivity Specificity

Speech 0.7531 ± 0.0362 0.7314 ± 0.0983 0.6817 ± 0.0818
Cough + Breath 0.7585 ± 0.0259 0.6400 ± 0.0859 0.8188 ± 0.0832
Cough + Speech 0.7817 ± 0.0282 0.8000 ± 0.1352 0.6628 ± 0.0992
Breath + Speech 0.7862 ± 0.0238 0.7314 ± 0.0878 0.7466 ± 0.1058
Cough + Breath + Speech 0.8026 ± 0.0229 0.6914 ± 0.1120 0.7959 ± 0.1175

Appendix A.3. FAIR

Table A4. AUC, sensitivity, specificity, AUPRC, precision, F1 and accuracy of FAIR models (DeiT-S/16
& wav2vec) on different combination of body sounds. (*) Experiments on additional body sound
combinations.

Feature Extractors DeiT-S/16 & wav2vec (BE3)

Body Sound AUC Sensitivity Specificity AUPRC Precision F1 Accuracy

Speech 0.8434 ± 0.0290 0.7429 ± 0.0767 0.8356 ± 0.0266 0.5566 ± 0.0371 0.4551 ± 0.0235 0.5619 ± 0.0234 0.8212 ± 0.0146
Cough + Breath 0.7585 ± 0.0174 0.6629 ± 0.0874 0.8168 ± 0.0754 0.4971 ± 0.0698 0.4199 ± 0.0806 0.5030 ± 0.0370 0.7222 ± 0.1352
Cough + Speech 0.8584 ± 0.0308 0.8171 ± 0.1063 0.7738 ± 0.0977 0.6016 ± 0.0648 0.4205 ± 0.0836 0.5447 ± 0.0588 0.7805 ± 0.0768
Breath + Speech 0.8319 ± 0.0187 0.7771 ± 0.0554 0.7895 ± 0.0644 0.6330 ± 0.0529 0.4164± 0.0690 0.5365 ± 0.5455 0.7876 ± 0.5455
Cough + Breath + Speech 0.8658 ± 0.0115 0.8057 ± 0.0554 0.7958 ± 0.0678 0.6383 ± 0.0255 0.4352 ± 0.0796 0.5584 ± 0.0506 0.7974 ± 0.0546
Counting (fast + normal)
(*) 0.7702 ± 0.0313 0.7086 ± 0.0836 0.7717 ± 0.0470 0.5009 ± 0.0347 0.2851 ± 0.0626 0.4000 ± 0.0549 0.6221 ± 0.1796

Phoneme (/a/-/e/-/o/)
(*) 0.7906 ± 0.0095 0.7886 ± 0.0530 0.6848 ± 0.0499 0.4743 ± 0.0417 0.3544 ± 0.1242 0.4429 ± 0.0567 0.6805 ± 0.1248

Appendix A.4. Remarks Regarding the AUPRC

As the classes are imbalanced in our study, we provided the AUPRC (Area Under the
Precision-Recall Curve). The performance of our models can be compared with the area
under the curve of a random classifier. The random classifier in our study is defined as a
horizontal line y = 35/226 ≈ 0.15, which is the ratio of the positive samples to the total
samples. Figure A1 shows an example of the Precision-Recall Curve of our experiment BE3
using cough and speech sounds.
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Figure A1. The precision–recall curve from one fold of the BE3 experiment using cough and
speech sounds.

Appendix B. Ablation Study

Appendix B.1. Feature Extractors

In addition to feature extractors that use self-attention layers, i.e., ViT and wav2vec,
we train two CNN-based feature extractors for waveform and spectrogram inputs. We
employ a ResNet50 [44] for spectrogram and simple 1D-CNN with four convolutional
blocks, denoted as 1D-CNN4, for waveform. Our setup is similar to the BA1-2 and BE1-2
experiments, only replacing DeiT-S/16 with ResNet50 and wav2vec with 1D-CNN network.
The AUC, sensitivity and specificity are shown in Tables A5 and A6. Both ResNet50 and
DeiT-S/16 are pretrained on the ImageNet classification task, where DeiT-S/16 already
outperforms ResNet50. When we transfer both pretrained models to our task, the results
demonstrate that DeiT-S/16 also outperforms ResNet50 consistently in all experiments.
This is expected because the pretrained DeiT-S/16 is initially more powerful than ResNet50,
which is observed in experiments on natural images. In addition, 1D-CNN4 performs
better when only a single body sound is used but less than wav2vec when applying body
sound fusion rules. Because our objective is to leverage the combination of body sounds,
the wav2vec net is preferred based on its performance.

Table A5. AUC, sensitivity, and specificity of ResNet50 and 1D-CNN4 as feature extractors on a
single body sound.

Feature Extractor 1D-CNN4 ResNet50

Body Sound AUC Sensitivity Specificity AUC Sensitivity Specificity

Cough-heavy 0.6396 ± 0.0839 0.8800 ± 0.0662 0.4042 ± 0.0555 0.6855 ± 0.0607 0.6571 ± 0.0767 0.7025 ± 0.0531
Breath-deep 0.6559 ± 0.0355 0.5886 ± 0.0690 0.7194 ± 0.1241 0.7387 ± 0.0244 0.5829 ± 0.0878 0.8545 ± 0.0561
Counting-fast 0.7162 ± 0.0400 0.5943 ± 0.1134 0.7885 ± 0.0829 0.7162 ± 0.0400 0.5943 ± 0.1134 0.7885 ± 0.0829
Counting-normal 0.6519 ± 0.0071 0.5143 ± 0.0866 0.7665 ± 0.0957 0.7082 ± 0.0395 0.5371 ± 0.0911 0.8188 ± 0.0570
Phoneme /a/ 0.7014 ± 0.0387 0.6057 ± 0.1321 0.7560 ± 0.1331 0.7014 ± 0.0387 0.6057 ± 0.1321 0.7560 ± 0.1331
Phoneme /e/ 0.6588 ± 0.0627 0.6571 ± 0.1743 0.6461 ± 0.1314 0.6588 ± 0.0627 0.6571 ± 0.1743 0.6461 ± 0.1314
Phoneme /o/ 0.6327 ± 0.0145 0.6400 ± 0.0736 0.6345 ± 0.0880 0.7004 ± 0.0785 0.8057 ± 0.0874 0.5780 ± 0.1591

Appendix B.2. Fusion Unit

In addition to self-attention, we perform an ablation study on weighted attention
pooling, a different attention-based fusion technique. In attention-weighted pooling, we
compute the joint feature vector z to be the weighted sum of body sound features:

z =
c

∑
j=1

wjfj (A1)

where wj is the attention weight given to feature fj. To obtain wj, we follow the idea of
the squeeze-and-excitation block [45]. Table A7 shows that the AUC scores of attention-
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weighted pooling remain almost unchanged. The best AUC score in FAIR with attention-
weighted pooling is 0.8313, which is roughly the same as the best one produced by DeiT-
S/16, 0.8367 (Table A2). In contrast, self-attention produced a steady rise in AUC scores,
with the best one being 0.8658, a 0.03 increase from using only DeiT-S/16. Figure A2 shows
the trend of AUC scores as more instances are added. Even AUC scores rise proportionally
to the number of body sounds. Fusion with attention-weighted pooling reaches saturation
at 0.83, while self-attention trends improve steadily.

Table A6. AUC, sensitivity, and specificity of ResNet50 and 1D-CNN4 as feature extractors on
different combinations of body sounds using self-attention fusion.

Feature Extractor 1D-CNN4 ResNet50

Body Sound AUC Sensitivity Specificity AUC Sensitivity Specificity

Speech 0.7235 ± 0.0052 0.5543 ± 0.0464 0.8335 ± 0.0399 0.7531 ± 0.0362 0.7314 ± 0.0983 0.6817 ± 0.0818
Cough + Breath 0.6900 ± 0.0145 0.7886 ± 0.1273 0.5278 ± 0.1150 0.7585 ± 0.0259 0.6400 ± 0.0859 0.8188 ± 0.0832
Cough + Speech 0.7362 ± 0.0081 0.6229 ± 0.0732 0.7770 ± 0.0651 0.7817 ± 0.0282 0.8000 ± 0.1352 0.6628 ± 0.0992
Breath + Speech 0.7351 ± 0.0060 0.5943 ± 0.0214 0.8492 ± 0.0332 0.7862 ± 0.0238 0.7314 ± 0.0878 0.7466 ± 0.1058
Cough + Breath + Speech 0.7596 ± 0.0122 0.6914 ± 0.0709 0.7539 ± 0.0668 0.8026 ± 0.0229 0.6914 ± 0.1120 0.7959 ± 0.1175

Table A7. AUC, sensitivity, and specificity of FAIR4Cov (DeiT-S/16 and wav2vec) on different
combinations of body sounds using attention-weighted pooling. (*) Experiments on additional body
sound combinations.

Feature Extractors DeiT-S/16 & wav2vec

Fusion Rules Attention-Weighted Pooling Self-Attention

Body Sound AUC Sensitivity Specificity AUC Sensitivity Specificity

Speech 0.8161 ± 0.0238 0.8172 ± 0.1166 0.6932 ± 0.1125 0.8434 ± 0.0290 0.7429 ± 0.0767 0.8356 ± 0.0266
Cough + Breath 0.7865 ± 0.0173 0.6514 ± 0.0911 0.8544 ± 0.0673 0.7585 ± 0.0174 0.6629 ± 0.0874 0.8168 ± 0.0754
Cough + Speech 0.8267 ± 0.0102 0.8628 ± 0.0457 0.6911 ± 0.0525 0.8584 ± 0.0308 0.8171 ± 0.1063 0.7738 ± 0.0977
Breath + Speech 0.8197 ± 0.0317 0.7257 ± 0.0690 0.8168 ± 0.0638 0.8319 ± 0.0187 0.7771 ± 0.0554 0.7895 ± 0.0644
Cough + Breath + Speech 0.8313 ± 0.0176 0.6743 ± 0.0428 0.0867 ± 0.0278 0.8658 ± 0.0115 0.8057 ± 0.0554 0.7958 ± 0.0678

Counting (fast + normal) (*) 0.7756 ± 0.0434 0.7086 ± 0.0911 0.7833 ± 0.0512 0.7702 ± 0.0313 0.7086 ± 0.0836 0.7717 ± 0.0470
Vowel (a, e, o) (*) 0.7863 ± 0.0211 0.7486 ± 0.0754 0.7068 ± 0.0797 0.7906 ± 0.0095 0.7886 ± 0.0530 0.6848 ± 0.0499

Figure A2. AUC scores of FAIR models sorted with respect to the number of instances in each
combination. In addition to existing combinations, we added counting (two instances) and vowel
(three instances) to comprehensively visualize the trend of AUC scores. While channel-weighted
pooling appeared to saturate around 0.83, self-attention grew steadily without any sign of saturation.
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Appendix C. Model Complexity

Below, we report the number of trainable parameters for our FAIR approach with
different combinations of respiratory sounds. As the feature extractors are frozen during
the training, the trainable parameters come from the fine-tuning unit and the classifier.

Table A8. Number of trainable parameters in the FAIR approach for different combinations of
body sounds.

Input Body Sounds Number of Trainable Parameters

Speech 22.07M
Cough + Breath 21.97 M
Cough + Speech 22.10 M
Breath + Speech 22.10 M
Cough + Breath + Speech 22.14 M
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